PREPRINT

NASA TM X- 6333/ AN X-RAY TEST FOR SUPERDENSE STARS

ELIHU BOLDT

GI C	PO PRICE \$	
えること	Hard copy (HC)	<u>00</u> .65
y ⁽	ff 653 July 65	

SEPTEMBER 1968

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

.,	N 68 - 3	690
8	(ACCESSION NUMBER)	(THRU)
₹.		
Α.	(PAGES)	(CODE)
Ē	TMV-63331	
Ş	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

An X-Ray Test For Superdense Stars Elihu Boldt

NASA-Goddard Space Flight Center Greenbelt, Maryland

Strong thermal x-ray emission from a small source (~ 10⁶ cm) is a signature to be expected from a superdense star, such as a neutron star (Wheeler, 1966). It is the purpose of this latter to point out that the superdense star hypothesis for a thermal x-ray source may be tested by measuring the statistical fluctuations in the observed x-ray photon count. As an example, this is shown to be a practical test for the x-ray star Sco X-1.

As first noted by Einstein (1909-1912) and much discussed recently in connection with quantum optics (Mandel and Wolf, 1965, McLean and Pike, 1965), the photon count (n) for a thermal source exhibits a statistical variance given by

(1)
$$< (n - < n >)^2 > = < n > (1 + \delta)$$

where & is the expectation value for the photon population per unit cell (h³) of phase space, for each of the two spin degrees of freedom.

For independent classical particles the variance would include only the first term of (1); i.e. the variance would be <m>. However, photons are Bosons associated with fields that interfere and hence are not completely independent. The value of δ gives the deviation from the classical particle statistical variance in the count to be expected for thermal photons.

The quantity δ of Equation 1 may be expressed as

(2)
$$\delta = \frac{\lambda^3}{2c} \cdot \left(\frac{I}{\Omega}\right)$$

where I is the spectral intensity (ergs/erg-cm²-sec) at a wavelength λ , from a source that subtends a solid angle Ω ; (c) is the velocity of light.

Note that the relation (2) between the measured variance of the photon count (1) and the measured spectral intensity (I) at λ gives the solid angle Ω subtended by the source when this information refers to thermal radiation; a small source enhances the statistical variance.

The x-ray source Sco X-1 has been measured (Gursky et al, 1965) to be a stellar (< 20") object and the optical counterpart is estimated to be at a distance of about 8 x 10^2 light years (Sandage et al, 1966). If Sco X-1 is a superdense star (Shklovsky, 1967) of radius $r\approx 10^6$ cm, then the angular size of the source is about 10^{-9} arc seconds, which is far beyond the angular resolution capability (~ 1 arc second) of the grazing incidence x-ray telescope (Vaiana et al, 1968). In contrast, for the intensity from Sco X-1 measured (Grader et al, 1968) at λ = 10° (I $\approx 10^2$ ergs/erg-cm²-sec), the situation of a superdense star of radius $r\approx 10^6$ cm as the source of x-rays would give the significantly large value of δ = 1/3. That this is a sensitive measure of the size of a small source may be realized by noting that for an alternate hypothetical situation where Sco X-1 is comparable in size to the sun ($r\approx 10^{11}$ cm) the enhanced fluctuations would essentially vanish since in this case $\delta < 10^{-10}$.

It is a pleasure to thank William Johnston for valuable discussions.

References

- Einstein, A.
 - 1909, Phys. Z. 10, 185 and 817.
 - 1912, "La Theorie du rayonment et les quanta," Instituts Solway, Brussels, Conseil de Physique ler 1911, edited by P. Langevin and L. de Broglie (Gauthier-Villars, Paris) p. 407.
- Grader, R. J., Hill, R. W., Seward, F. D., and Toor, A., 1966, Science 152, 1499.
- Gursky, H., Giacconi, R., Gorenstein, P., Waters, J. R., Oda, M., Bradt, H., Garmire, G., and Sreekantan, B. V., 1966, Astrophysical Journal 144, 1246.
- Mandel, L., and Wolf, E., 1965, Reviews of Modern Physics 37, 231.
- McLean, T. P., and Pike, E. R., 1965, Physics Letters 15, 318.
- Sandage, A. R., Osmer, P., Giacconi, R., Gorenstein, P., Gursky, H., Water, J., Bradt, H., Garmire, G., Sreekantan, B. V., Oda, M., Osawa, K., and Jugaku, J., 1966, Astrophysical Journal 146, 316.
- Shklovsky, I. S., 1967, Astrophysical Journal 148, L-1.
- Vaiana, G. S., Reidy, W. P., Zehnpfenning, T., Van Speybroeck, L., and Giacconi, R., 1968, Science 161, 564.
- Wheeler, 5. A., 1966, Annual Review of Astronomy and Astrophysics 4, 393.